Kaposi Sarcoma Research Papers Samples

Abstract

Antibody titres against Kaposi's sarcoma associated herpesvirus (KSHV or human herpesvirus 8 (HHV-8)) and Epstein–Barr virus (EBV) were examined in people who subsequently developed Kaposi's sarcoma and non-Hodgkin's lymphoma, within randomised controlled trials of antiretroviral therapy in adults infected with the human immunodeficiency virus-1 (HIV). For each case of Kaposi's sarcoma (n=189) and each case of non-Hodgkin's lymphoma (n=67), which developed after randomisation, one control was randomly selected from other trial participants, after matching for age, sex, ethnicity, mode of HIV transmission, type of treatment received and period of follow-up. Using sera taken an average of two and a half years before the diagnosis of cancer, titres of antibodies against KSHV latent (LANA) and lytic (K8.1) antigens and against EBV (VCA) antigens were investigated in relation to subsequent risks of cancer by calculating odds ratios (OR) using conditional logistic regression. Latent antibodies against KSHV were detectable among 38% (72 out of 189) of Kaposi's sarcoma cases and 12% (23 out of 189) of their controls (OR=4.4, 95% confidence intervals (CI) 2.3–8.3, P<0.001). The OR for Kaposi's sarcoma increased with increasing antilatent KSHV antibody titre (χ21 for trend=32.2, P<0.001). Lytic antibodies against KSHV were detectable among 33% (61 out of 187) of Kaposi's sarcoma cases and 19% (36 out of 187) of their controls (OR=2.0, 95% CI 1.2–3.4, P=0.003) and the OR for Kaposi's sarcoma increased with increasing antilytic KSHV antibody titre (χ21 for trend=6.2, P=0.02). Virtually, all cases and controls had anti-EBV antibodies detected and the OR for non-Hodgkin's lymphoma associated with a doubling of the anti-EBV antibody titre was estimated to increase by a multiplicative factor of 1.3 (95% CI 0.9–1.7, P=0.1). Kaposi's sarcoma was not associated with antibody levels against EBV (P=0.4) and non-Hodgkin's lymphoma was not associated with antibodies against KSHV (latent P=0.3; lytic P=0.5). Adjustment for CD4 count at the time of sample collection made no material difference to any of the results. In conclusion, among human immunodeficiency virus infected people, high levels of antibodies against KSHV latent and lytic antigens are strongly associated with subsequent risk of Kaposi's sarcoma but not non-Hodgkin's lymphoma. Antibody titre to EBV does not appear to be strongly associated with subsequent risk of Kaposi's sarcoma or non-Hodgkin's lymphoma in HIV infected people.

Keywords: Kaposi's sarcoma, non-Hodgkin's lymphoma, Epstein–Barr virus, Kaposi's sarcoma-associated herpesvirus, human immunodeficiency virus

The risk of Kaposi's sarcoma and non-Hodgkin's lymphoma is increased in human immunodeficiency virus-1 (HIV) infection (Beral and Newton, 1998). Both of these tumours are also associated with a herpesvirus infection: Kaposi's sarcoma has been consistently linked with Kaposi's sarcoma associated herpesvirus (KSHV or human herpesvirus-8 (HHV-8)), while non-Hodgkin's lymphoma has been linked with another gamma-herpesvirus, the Epstein–Barr virus (EBV) (Boshoff, 1999; Brooks et al, 1999). However, there are few data from prospective studies and the role of antibody titres in predicting the subsequent risk of cancer is unclear. The aim of the research described here was to investigate using data collected prospectively, the evolution of antibody responses to KSHV and to EBV in HIV infected individuals, who subsequently developed Kaposi's sarcoma or non-Hodgkin's lymphoma compared to that in HIV infected controls without cancer.

MATERIALS AND METHODS

Study population

UK participants in the Concorde (1994), Delta (1996) and Alpha (1996) randomised controlled trials of antiretroviral therapy for HIV infection were followed for the development of AIDS-defining cancers. Cases were all participants who did not have a tumour at trial entry, but who subsequently developed Kaposi's sarcoma (n=189) or non-Hodgkin's lymphoma (n=67). The diagnosis of cancer was made at the participating clinical centre according to criteria used in each of the three clinical trials and all data used in these analyses were anonymised. No additional histological confirmation of diagnosis was available for the purposes of this investigation, nor were any details of the specific subtypes of non-Hodgkin's lymphoma available. Further details of the individual trials can be found elsewhere (Concorde Co-ordinating Committee, 1994; Delta Co-ordinating Committee, 1996; Alpha International Co-ordinating Committee, 1996).

For each person with incident cancer, a control was randomly selected from trial participants, who had not developed cancer after the same period of active follow-up (methods of follow-up are described in the individual trial reports), after matching by trial, age group (±10 years), sex, HIV transmission group (homosexual, intravenous drug user, haemophiliac, blood transfusion, other blood contact or heterosexual), treatment group used in each trial (zidovudine (AZT) or placebo [Concorde], low-dose or high-dose didanosine ddI [Alpha], AZT or AZT+ddI or AZT+zalcitabine (ddC) [Delta]), ethnicity (Caucasian, Indian subcontinent, West Indian, African, other or mixed) and length of time from entry into the trial until diagnosis of cancer in cases or the same time interval in controls (±3 months).

At least one sample of stored serum was available for all cases and their matched controls. In general, these were taken at least 6 months before the date of diagnosis of cancer in cases, or at the same period of follow-up as the cases to whom they were matched for controls – referred to as pseudo-diagnosis. Sera were stored centrally at −70°C and shipped on dry ice to University College London for antibody analyses. A proportion of cases and controls had two serum samples available for testing, taken at different time points prior to diagnosis.

Laboratory investigations

All serum samples were tested for antibodies against KSHV and EBV. Assays were performed by investigators, who were blinded to the identity and personal characteristics of the person from whom each sample came and specifically if they were a case or a control. Details of the testing procedure for antibodies against both latent and lytic KSHV antigens are described elsewhere (Newton et al, 2003a, 2003b; Bourboulia et al, 2004). Briefly, an indirect immunofluorescence assay to detect IgG antibodies against the KSHV latent nuclear antigen (LANA) encoded by orf73 was used. Serum samples that were positive for antibodies against latent KSHV antigens (at a dilution of 1 : 100 or more) were then tested at doubling dilutions, starting at 1 : 100 in order to provide a measure of anti-KSHV antibody titre. For the detection of anti-lytic KSHV antibodies, an adapted multiantigenic peptide (MAP) based enzyme-linked immunoassay against the late phase of KSHV replication K8.1 protein was used (Lam et al, 2002). Concordant results were obtained for 78% of 253 controls in whom both assays were conducted.

For the detection of human IgG antibodies to EBV, all but two control samples were analysed by indirect immunofluorescence (IFA) (Akre et al, 1999). Viral capsid antigen (VCA) IgG was determined with acetone-fixed P3HR-1 cells (Hinuma et al, 1967). Titres were determined in two-fold dilutions from 1/101 to 1/104. Cutoff for positivity was set at titre ⩾40. The titre of the antibody was taken as the dilution where brightness of fluorescence appeared to diminish.

Ramos cells (both KSHV and EBV negative cell lines) were used to test for crossreactivity with antigens from both viruses. No such reactivity was observed.

CD4 T-lymphocyte counts (measured as described in individual studies) at, or within, 3 months, of the date of collection of the sample used in the study, were available for 86% (163 out of 189) of Kaposi's sarcoma cases and for 75% (50 out of 67) of non-Hodgkin's lymphoma cases and their matched controls. For two case–control pairs, there were insufficient sera available for testing for antibodies against KSHV lytic antigens.

Statistical analyses

Statistical analyses were conducted using STATA software (version 7.0; 2001). Odds ratios (ORs) for cancer in relation to anti-HHV-8 and anti-EBV antibody titres were estimated with 95% confidence intervals (CI) using conditional logistic regression, with and without adjustment for CD4 count (<200, 200–500, >501) at the time of sample collection. Tests for statistical significance of OR and linear trend were derived from likelihood ratio test statistics. All P-values are derived from two-sided tests of statistical significance.

The main analyses included all subjects who had at least one sample of serum available, taken at least 6 months before the date of diagnosis of cancer in cases or pseudo-diagnosis in controls. For those subjects with two serum samples available, the first was used. Some additional analyses were restricted to individuals for whom two serum samples were available prior to diagnosis. In relation to KSHV, latent antibody titres were grouped into negative (at a dilution of less than 1 : 100) and positive. Seropositives were further subdivided into low titre (dilutions of 1 : 100 to 1 : 1600), medium titre (1 : 3200 to 1 : 25 600) and high titre (1 : 51 200 or more). These categories were chosen on the basis of results from previous case–control studies of Kaposi's sarcoma in relation to anti-KSHV antibody titres (Sitas et al, 1999; Newton et al, 2003a, 2003b). Kaposi's sarcoma associated herpesvirus lytic antibodies were grouped into negative (optical density (OD) <0.84); indeterminate (low OD 0.84–1.06) and positive (OD>1.06). The seropositives were further subdivided according to the optical density (medium OD 1.07–1.99 and high OD>1.99). In analyses involving two levels of lytic anti-KSHV antibodies, those with indeterminate values were grouped together with the negatives.

Since the assays against latent and lytic anti-KSHV antibodies are measuring responses to different aspects of the viral life cycle, no attempt was made to combine the results from each one. All but two subjects had detectable antibodies against EBV and relative risks were, therefore, estimated in relation to a doubling of titre.

RESULTS

Table 1 shows the distribution of Kaposi's sarcoma and non-Hodgkin's lymphoma cases and their controls, according to the variables on which they were matched and to the CD4 count at the time that the first serum sample was taken.

Table 1

Distribution of Kaposi's sarcoma and non-Hodgkin's lymphoma cases and controls according to the matching variables

Kaposi's sarcoma

The analysis of all study participants who had at least one sample of serum available, taken an average of about two and a half years prior to cancer diagnosis (or pseudo-diagnosis in controls) is shown in Table 2 for antibodies against KSHV latent (189 case–control pairs) and lytic (187 case–control pairs) antigens. Among those who developed Kaposi's sarcoma, the prevalence of latent anti-KSHV antibodies was 38% (72 out of 189) and among their matched controls it was 12% (23 out of 189; odds ratio (OR)=4.4, 95% CI=2.3–8.3, P<0.001). The risk of Kaposi's sarcoma increased with increasing latent anti-KSHV antibody titre (χ21=32.0; P<0.001). Adjustment for CD4 count at time of sample collection made little difference to the result (χ21=26.0; P<0.001). Among those who developed Kaposi's sarcoma, the prevalence of lytic anti-KSHV antibodies was 33% (61 out of 187) and among their matched controls it was 19% (36 out of 187; OR=2.0, 95% CI=1.2–3.4, P=0.003). The risk of Kaposi's sarcoma increased with increasing lytic anti-KSHV antibody titre (χ21=6.2; P=0.02). Adjustment for CD4 count at time of sample collection made little difference to the result (χ21=4.3; P=0.04).

Table 2

Odds ratios (OR) for Kaposi's sarcoma according to a measure of latent and lytic anti-KSHV antibody titre

Table 3 shows the OR for Kaposi's sarcoma according to latent and lytic anti-HHV8 antibody status, stratified by the time between sample collection and diagnosis. For both antibody measures, there were no statistically significant differences in the OR for Kaposi's sarcoma, according to the time between sample collection and diagnosis of cancer.

Table 3

Odds ratios (OR) for Kaposi's sarcoma according to the latent (seropositive vs seronegative) and lytic (seropositive vs seronegative/indeterminate) anti-KSHV antibody status, stratified by the time between first sample collection and diagnosis...

Two samples of sera from before the development of cancer were available for 118 cases with Kaposi's sarcoma and their matched controls. The mean time between the first and second blood samples was 766 days (standard deviation 350 days). At the time of first sample collection, the prevalence of latent anti-KSHV antibodies was 40% (47 out of 118) among those who developed Kaposi's sarcoma and 11% (13 out of 118) among their matched controls. In the second sample, the prevalence was the same for cases but higher for controls (40% (47 out of 118) vs 21% (25 out of 118)). Using those who were seronegative in both serum samples as a comparison group, the risk of Kaposi's sarcoma was significantly (P<0.05) higher among those people who were seropositive in the first sample, irrespective of their serostatus in the second sample (Table 4). There was no evidence that those who seroconverted to KSHV latent antibodies in the time between the first and second samples had a risk of Kaposi's sarcoma over and above that of those who remained seropositive throughout the study period. Similar results were obtained when additionally adjusted for CD4 count (data not shown).

Table 4

Odds ratios for Kaposi's sarcoma among those with two serum samples available for testing, according to whether the first and second sample was sero-positive or negative for latent and lytic anti-KSHV antibodies

Of the 118 case–control pairs with two samples of sera, for 116 there was sufficient volume of sera available to test for lytic anti-KSHV antibodies. At the time of first sample collection, the prevalence of lytic anti-KSHV antibodies was 23% (27 out of 116) among those who developed Kaposi's sarcoma and 15% (17 out of 116) among their matched controls. In the second sample, the prevalence was 22% (26 out of 116) among cases and 13% in controls. Using those who were seronegative in both serum samples as a comparison group, the risk of Kaposi's sarcoma was significantly (P<0.05) higher among all other groups (Table 4), although there was no evidence that those who seroconverted to KSHV lytic antibodies in the time between the first and second samples had a risk of Kaposi's sarcoma over and above that of those who remained seropositive throughout the study period. Similar results were obtained when additionally adjusted for CD4 count (data not shown).

In relation to antibodies against EBV-VCA, for a doubling of titre, the odds ratio for Kaposi's sarcoma was estimated to increase by a multiplicative factor of 1.1 (95% CI 0.9–1.2; χ21=0.6, P=0.4; Table 5). After adjustment for CD4 count at the time of sample collection, this factor was 1.0 (95% CI 0.8–1.2; χ21=0.04, P=0.8).

Table 5

Multiplicative factor by which the odds ratios for Kaposi's sarcoma and non-Hodgkin's lymphoma increased in relation to a doubling of the anti-EBV antibody titre

Non-Hodgkin's lymphoma

The prevalence of antibodies against latent KSHV antigens was 15% (10 out of 67) in those with non-Hodgkin's lymphoma and 9% (6 out of 67) in their matched controls (OR=1.8, 95% CI 0.6–5.4; Table 6). The prevalence of antibodies against lytic KSHV antigens was 9% (six out of 66) in those with non-Hodgkin's lymphoma and 6% (four out of 66) in their matched controls (OR=1.5, 95% CI 0.4–5.3; Table 6).

Table 6

Odds ratios for non-Hodgkin's lymphoma in relation to latent and lytic antibodies against KSHV

Among all people with non-Hodgkin's lymphoma (67 case–control pairs; for those with two serum samples, the first was used), for a doubling of anti-EBV antibody titre, the odds ratio for non-Hodgkin's lymphoma was estimated to increase by a multiplicative factor of 1.3 (95% CI 0.9–1.7; χ21=2.5, P=0.1; Table 5). After adjustment for CD4 count at the time of sample collection, the equivalent factor was 1.5 (95% CI 0.9–2.3; χ21=3.30, P=0.1). Two samples of sera were available for 48 cases of non-Hodgkin's lymphoma and their matched controls. The mean time between first and second blood samples was 653 days (standard deviation 382 days). For 13 cases and six controls, the titre of antibodies against EBV stayed the same in the first and second samples; for 15 cases and 14 controls the titre declined between samples and for 18 cases and 26 controls the titre increased.

DISCUSSION

Among HIV infected people, high levels of antibodies against KSHV are strongly predictive of the subsequent risk of Kaposi's sarcoma, but not of non-Hodgkin's lymphoma. We find no significant association between anti-EBV-VCA antibodies and non-Hodgkin's lymphoma or Kaposi's sarcoma in HIV seropositive adults.

Data from case–control studies (using the same assay against KSHV latent nuclear antigens encoded by orf73) suggest that high anti-KSHV antibody titres are associated with an increased risk of Kaposi's sarcoma both in HIV seropositive and seronegative people (Sitas et al, 1999; Davidovici et al, 2001; Newton et al, 2003a, 2003b; Ziegler et al, 2003). Prospective data are lacking, although a study of HIV infected people in Italy suggested that anti-KSHV antibody titres may be persistently high even before the diagnosis of Kaposi's sarcoma, based on the observation of 21 cases of the tumour (Rezza et al, 1999). Data presented here confirm, on substantially larger numbers of cases, that anti-KSHV antibodies are detectable before the diagnosis of the tumour and that the subsequent risk of Kaposi's sarcoma increases with increasing antibody titres (this is true for latent and lytic antibodies). Since all study participants were HIV seropositive at entry to the study, we could not investigate whether the risk of Kaposi's sarcoma was higher among those who seroconverted to KSHV after becoming infected with HIV as compared to before infection with HIV (Renwick et al 1998; Jacobson et al, 2000). However, we found no evidence that seroconversion to antibodies against KSHV during the course of this study was associated with a particularly increased risk of Kaposi's sarcoma as compared to people who had been seropositive for KSHV throughout.

Human immunodeficiency virus-associated non-Hodgkin's lymphomas are atypical and can be divided into three broad categories on the basis of their clinical, histological and epidemiological features. The most common subtype in almost all studies is a B cell immunoblastic lymphoma (Newton et al, 1999). Roughly half of such tumours have been found to contain evidence of EBV DNA in tumour tissue. Another subtype is Burkitt-type non-Hodgkin's lymphoma, which resemble the sporadic form of the disease; about 30% of these tumours have been found to contain EBV-DNA. The third major subtype is cerebral non-Hodgkin's lymphoma, almost 100% of which contains evidence of EBV DNA. Precise diagnostic information on the subtypes of non-Hodgkin's lymphoma was unavailable in this study.

In relation to non-Hodgkin's lymphoma, data from three prospective studies of people not known to be infected with HIV suggest that high antibody titres to the EBV VCA are predictive of an increased risk of the tumour. This is based on observation of 14 cases of Burkitt's lymphoma in Ugandan children and 115 cases of other non-Hodgkin's lymphomas in Europe and the USA (de-Thé et al, 1978; Mueller et al, 1991; Lehtinen et al, 1993). Results presented here are the only prospective data on anti-EBV antibody titres in relation to the development of lymphoma in people known to be infected with HIV.

As almost everyone studied was seropositive for antibodies against EBV, comparisons between cases and controls rely on a quantitative assessment of antibody titre, thereby reducing statistical power to detect true differences. Furthermore, recent work by Berrington de Gonzalez et al (submitted) demonstrated substantial variability in anti-EBV-VCA antibody titres for control samples, depending on laboratory conditions. The fact that non-Hodgkin's lymphoma comprises a heterogeneous group of diseases, only a proportion of which may be associated with EBV infection, coupled with variability in assay results, it is likely that a subtle association would be missed, particularly given the relatively small number of cases investigated here. Similarly, laboratory variation in results for antibodies against KSHV antigens may account for the discordant results found for a proportion of those individuals who had two samples tested.

In summary, among HIV infected people, high levels of antibodies against KSHV appear strongly associated with subsequent risk of Kaposi's sarcoma, but not with non-Hodgkin's lymphoma. Antibodies against EBV were not strongly associated with subsequent development of Kaposi's sarcoma or non-Hodgkin's lymphoma.

References

  • Akre O, Lipworth L, Tretli S, Linde A, Engstrand L, Adami HO, Melbye M Andersen A, Ekbom A. Epstein Barr virus and cytomegalovirus in relation to testicular cancer risk: a nested case–control study. Int J Cancer. 1999;82:1–5.[PubMed]
  • Alpha International Co-ordinating Committee The Alpha Trial: European/Australian randomized double-blind trial of two doses of didanosine in zidovudine-intolerant patients with symptomatic HIV disease. AIDS. 1996;10:867–880.[PubMed]
  • Beral V, Newton R. Overview of the epidemiology of immunodeficiency associated cancers. Monogr Natl Cancer Inst. 1998;23:1–6.[PubMed]
  • Berrington de Gonzalez A, Urban MI, Sitas F, Blackburn N, Goodhill A, Hale M, Patel M, Ruff P, Sur R, Newton R, Beral V. Antibodies against six human herpesviruses in relation to seven cancers in black South Africans. submitted. [PMC free article][PubMed]
  • Boshoff C. Kaposi's sarcoma associated herpesvirus Cancer Surveys Volume 33, Infections and Human Cancer 1999Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; Newton R, Beral V, Weiss R (eds)
  • Bourboulia D, Aldam D, Lagos D, Allen E, Williams I, Cornforth D, Copas A, Boshoff C. Short and long-term effects of highly active antiretroviral therapy of Kaposi's sarcoma-associated herpesvirus immune responses and viraemia. AIDS. 2004;18:485–493.[PubMed]
  • Brooks LA, Crook T, Crawford DH. Epstein Barr virus and lymphomas Cancer Surveys Volume 33, Infections and Human Cancer 1999Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; Newton R, Beral V, Weiss R (eds)
  • Concorde Co-ordinating Committee Concorde: MRC/ANRS randomised double-blind controlled trial of immediate and deferred zidovudine in symptom-free HIV infection. Lancet. 1994;343:871–881.[PubMed]
  • Davidovici B, Karakis I, Bourboulia D, Ariad S, Zong JC, Benharroch D, Dupin N, Weiss R, Hayward G, Sarov B, Boshoff C. Seroepidemiology and molecular epidemiology of Kaposi's sarcoma-associated herpesvirus among Jewish population groups in Israel. J Natl Cancer Inst. 2001;93:194–202.[PubMed]
  • Delta Co-ordinating Committee Delta: a randomised double-blind controlled trial comparing combinations of zidovudine plus didanosine and zalcitabine with zidovudine alone in HIV-infected individuals. Lancet. 1996;348:283–291.[PubMed]
  • Hinuma Y, Konn M, Yamaguchi J, Wudarski DJ, Blakeslee JR, Grace JT. Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J Virol. 1967;1:1045–1051.[PMC free article][PubMed]
  • Jacobson LP, Jenkins FJ, Springer G, Muñoz A, Shah KV, Phair J, Zhang Z-F, Armenian H, for the Multicenter AIDS Cohort Study Interaction of human immunodeficiency virus 1 and human herpesvirus type 8 infections on the incidence of Kaposi's sarcoma. J Iinvest Dermatol. 2000;181:1940–1949.[PubMed]
  • Lam LL, Pau CP, Dollard SC, Pellett PE, Spirar TJ. Highly sensitive assay for human herpesvirus 8 antibodies that uses multiple antigenic peptide derived from open reading frame K8.1. J Clin Micorbiol. 2002;40:325–329.[PMC free article][PubMed]
  • Lehtinen T, Lumio J, Dillner J, Hakama M, Knekt P, Lehtinen M, Teppo L, Leinikki P. Increased risk of malignant lymphoma indicated by elevated Epstein–Barr virus antibodies – a prospective study. Cancer Causes Control. 1993;4:187–192.[PubMed]
  • Mueller N, Mohar A, Evans A, Harris NL, Comstock GW, Jellum E, Magnus K, Orentreich N, Polk BF, Vogelman J. Epstein–Barr virus antibody patterns preceding the diagnosis of non-Hodgkin's lymphoma. Int J Cancer. 1991;49:387–393.[PubMed]
  • Newton R, Beral V, Weiss R. Human immunodeficiency virus infection and cancer Cancer Surveys. Volume 33, Infections and Human Cancer 1999Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; Newton R, Beral V, Weiss R (eds)
  • Newton R, Ziegler J, Bourboulia D, Casabonne D, Beral V, Mbidde E, Carpenter C, Parkin DM, Wabinga H, Mbulaiteye S, Jaffe H, the Uganda Kaposi's Sarcoma Study Group. Weiss R, Boshoff C. Infection with Kaposi's sarcoma-associated herpesvirus (KSHV) and human immunodeficiency virus (HIV) in relation to the risk and clinical presentation of Kaposi's sarcoma in Uganda. Br J Cancer. 2003b;89:502–504.[PMC free article][PubMed]
  • Newton R, Ziegler J, Bourboulia D, Casabonne D, Beral V, Mbidde E, Carpenter L, Reeves G, Parkin DM, Wabinga H, Mbulaiteye S, Jaffe H, the Uganda Kaposi's Sarcoma Study Group. Weiss R, Boshoff C. The sero-epidemiology of Kaposi's sarcoma-associated herpesvirus in adults with cancer, in Uganda. Int J Cancer. 2003a;103:226–232.[PubMed]
  • Renwick N, Halaby T, Weverling GJ, Dukers NH, Simpson GR, Coutinho RA, Lange JM, Schulz TF, Goudsmit J. Seroconversion for human herpesvirus 8 during HIV infection is highly predictive of Kaposi's sarcoma. AIDS. 1998;12:2481–2488.[PubMed]
  • Rezza G, Andreoni M, Dorrucci M, Pezzotti P, Monini P, Zerboni R, Salassa B, Colangeli V, Sarmati L, Nicastri E, Barbanera M, Pristera R, Aiuti F, Ortona L, Ensoli B. Human herpesvirus 8 seropositivity and risk of Kaposi's sarcoma and other acquired immunodeficiency syndrome-related diseases. J Natl Cancer Inst. 1999;91:1468–1474.[PubMed]
  • Sitas F, Carrara H, Beral V, Newton R, Reeves G, Bull D, Patel M, Ruff P, Bezwoda WR, Hale M, Jentsh U, Retter E, Pacella-Norman R, Bourboulia D, Whitby D, Boshoff C, Weiss R. The seroepidemiology of HHV-8/KSHV in a large population of black cancer patients in South Africa. N Eng J Medicine. 1999;340:1863–1871.
  • de-Thé, Geser A, Day NE, Tukei PM, Williams EH, Beri DP, Smith PG, Dean AG, Bronkamm GW, Feorino P, Henle W. Epidemiological evidence for a causal relationship between the Epstein–Barr virus and Burkitt's lymphoma from Ugandan prospective study. Nature. 1978;274:756–761.[PubMed]
  • Ziegler J, Newton R, Bourboulia D, Casabonne D, Beral V, Mbidde E, Carpenter L, Reeves G, Wabinga H, Mbulaiteye S, Jaffe H, the Uganda Kaposi's Sarcoma Study Group. Weiss R, Boshoff C. Risk factors for Kaposi's sarcoma: a case–control study of HIV seronegative people in Uganda. Int J Cancer. 2003;103:233–240.[PubMed]

Kaposi's sarcoma and its treatment

Read about Kaposi's sarcoma, the different types and how it might be treated. 

What it is

Kaposi's sarcoma (KS) is a rare type of cancer that develops from cells called endothelial cells. KS growths are called lesions or tumours. External lesions on the skin are the most common. But it can also involve internal organs such as the lymph nodes, lung, bowel, liver and spleen.

KS develops in a different way to many other types of cancers. Most cancers begin in one place in the body and may then spread to other places. KS can start in several areas of the body at the same time.

The causes of Kaposi's sarcoma

A main cause of KS is a virus called the human herpes virus 8 (HHV8). The virus infects the cells and it is thought that this causes them to become cancerous. Mostly HHV8 is a sexually transmitted virus and is a common infection. It can also pass in blood between drug users who share needles.

Not everyone infected with HHV8 gets KS. So it is thought that there are other factors involved. Scientists agree that having a weakened immune system or certain types of infections along with HHV8, also play a part in a person developing KS.

Signs and symptoms

The signs and symptoms are different, depending on whether you have external KS on the skin, or KS inside the body. Lesions on the skin are more common than internal lesions inside of the body.

Kaposi's sarcoma of the skin

These nodules or lesions on the skin usually start out very small and flat. They do not cause any pain or itching and seem harmless. They look quite like a bruise, but do not lose their colour when pressed, as a bruise does.

As they grow, they might start to stick up above the surrounding skin and grow into each other giving the appearance of patchwork. The lesions might be in different colours such as brown, blue, red or deep purple.

KS in the skin might grow very slowly and show no changes for a few months. But some grow more quickly, with new areas appearing weekly.

Internal Kaposi's sarcoma

Internal KS lesions can grow in the lymph nodes and body organs, such as the lungs, liver and spleen. The symptoms you have depend on which organs are affected.

The most common type of KS is related to AIDS. In AIDS related KS, it is common for disease to be in the lymph nodes. So you might have some swelling of your arms and legs called lymphoedema. KS cells block the flow of lymph fluid through the lymphatic system. So tissue fluid backs up and causes swelling. It can be very painful and uncomfortable.

There is no cure for lymphoedema, but treatment can help to control it and relieve the symptoms. The earlier it is picked up and treated, the easier it is to control. So do let your doctor know if you have any swelling that you think may be lymphoedema.

Diagnosing Kaposi's sarcoma

The only way to definitely tell if you have a Kaposi’s sarcoma is to examine a tissue sample (biopsy) under a microscope.

You can usually have a biopsy with a local anaesthetic if the lesion is on the skin.

These tests are more invasive if your doctor thinks you have KS inside your body. For example, you would need a bronchosopcy if your doctor thinks you may have KS in the lungs. You might have an endoscopy if your doctor thinks you may have KS in your digestive system.

You have these tests under a local or general anaesthetic, depending on your situation. You might also have sedation to help you relax.

Types and treatment of Kaposi's sarcoma

Which treatment you have depends on:

  • the type of KS
  • the size and location of the lesions
  • how severe it is
  • your general health

There are four types of Kaposi's sarcoma. 

Classic KS

This type of KS is very rare and is only found on the skin, mainly on the lower legs and feet. It is most common in older men of Jewish, middle Eastern or Mediterranean origin. It is a slow growing cancer and does not usually cause any problems apart from the appearance of the lesions.

You might not need treatment if your KS is in the early stages. You might have radiotherapy if the lesions are large and in very visible areas on the body. Or your doctor may suggest freezing the areas with liquid nitrogen or removing them with a small operaition.

Endemic or African KS

This type of KS is found in parts of Africa where HHV8 infection is common. It is faster growing than classic KS.

It is more common in men, but women and children of all ages may develop it. You might have radiotherapy or chemotherapy for this type of KS.

Transplant related KS

This type of KS is very rare and is most common in people who have weakened or damaged immune systems For example, people who have had an organ transplant operation. These people need to take drugs to stop their bodies rejecting the donated organ. These drugs suppress the immune system.

Reducing or changing the immunosuppressive drugs usually improves it. If that doesn't help, it may be necessary to treat the KS with radiotherapy or chemotherapy

AIDS related KS

This is the most common type of KS. It tends to grow faster than the other types. Your immune system is weakened if you have AIDS and this increases your risk of developing KS.

The treatment you have depends very much on how well you are and whether or not you can cope with the side effects of treatment. You might have treatment with chemotherapy or interferon. The side effects of interferon can be quite severe.

Foscarnet is an anti herpes drug that doctors are testing for this type of KS.

Treatment for advanced KS

Usually you have chemotherapy if the KS has spread throughout your body. Treatment at this stage is palliative, which means it is used to treat symptoms rather than offer a cure. You usually have 2 or more of these drugs: 

  • vinblastine
  • bleomycin
  • etoposide
  • doxorubicin (Adriamycin)
  • Paclitaxel (Taxol)

Newer chemotherapy drugs are now available to treat KS that is no longer being controlled by standard chemotherapy. These are liposomal drugs. They are wrapped up in a fatty covering called liposome. This makes the drug work better and causes less severe side effects.

Examples include doxorubicin liposome (Doxil or Caelyx) and daunorubicin liposome (DaunoXome).

Coping

It can be difficult coping with a diagnosis of cancer, particularly if it is a rare type.

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *